
2nd Edition Published Q1 2024

SPACE CYBERSECURITY

Market Intelligence Report

CyberInflight Space Cybersecurity Market Intel. partner

Space ISAC member (US and EU)

Part of operational security teams

on EU projects (ex. EGNOS v3)

Contract database

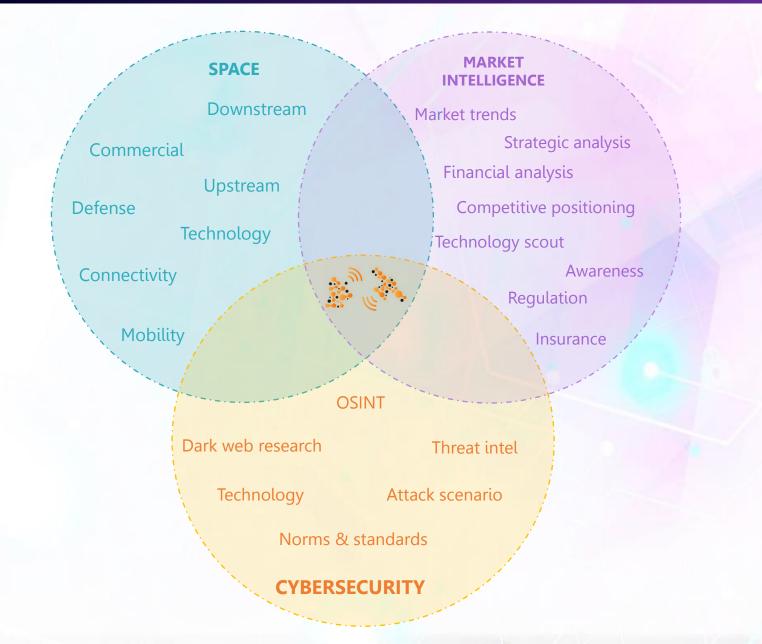
Indated on kine 1º 202


Space cyber Economy database Updated on May 2023

AsiaPAC.fic EUrope, Meadle East/North Afri-

ica cubarsecurity budgets from 2018 to 2020

CyberInflight Space Cybersecurity Market Intel. partner

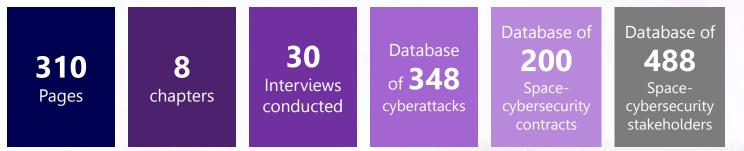


OUR ACTIVITIES

Our vision

A strategic report on Space Cybersecurity

OUR STRATEGIC REPORTS


Space Cybersecurity Market Intelligence report

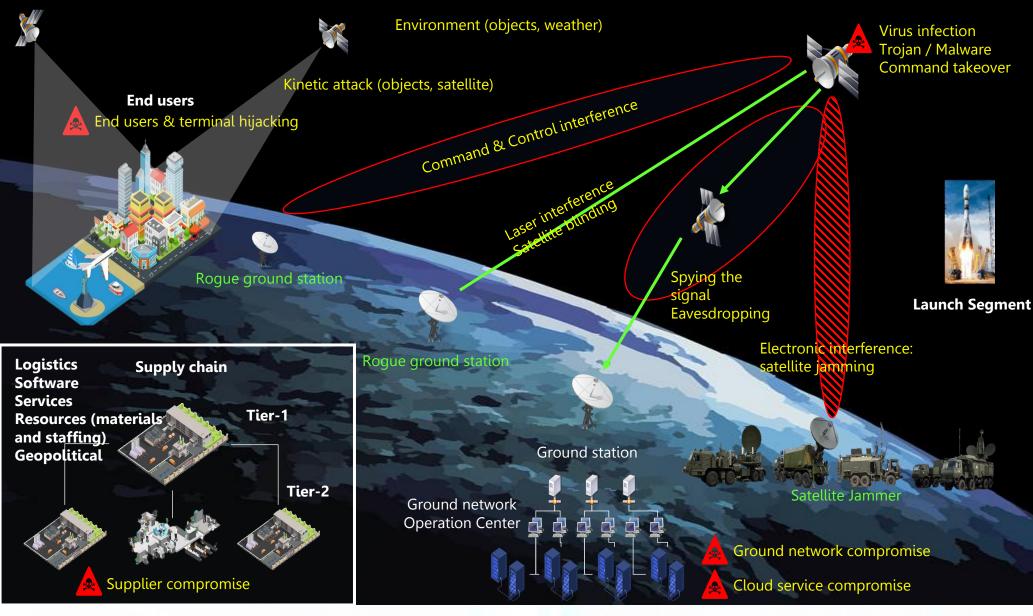
- Strategic approach
- Interview campaign
- Market outlook
- Sector trends and dynamics
- Strategic analysis and forecast
- Stakeholders' profile
- Regulatory landscape
- Threat intelligence

First Edition released in April 2023: CyberInflight first strategic report is a **unique resource on the space cybersecurity domain** consolidating all necessary information to better comprehend the market and make insightful decision making. CyberInflight is proud to be at the forefront of this domain and one of the **only market intelligence companies** to have consolidated such an amount of information in a single document.

Second Edition released in April 2024: CyberInflight intends to publish an annual update of its strategic on Space Cybersecurity Market Intelligence report, in order to remain up-to-date and provide the latest consolidated information for a better understanding of the market.

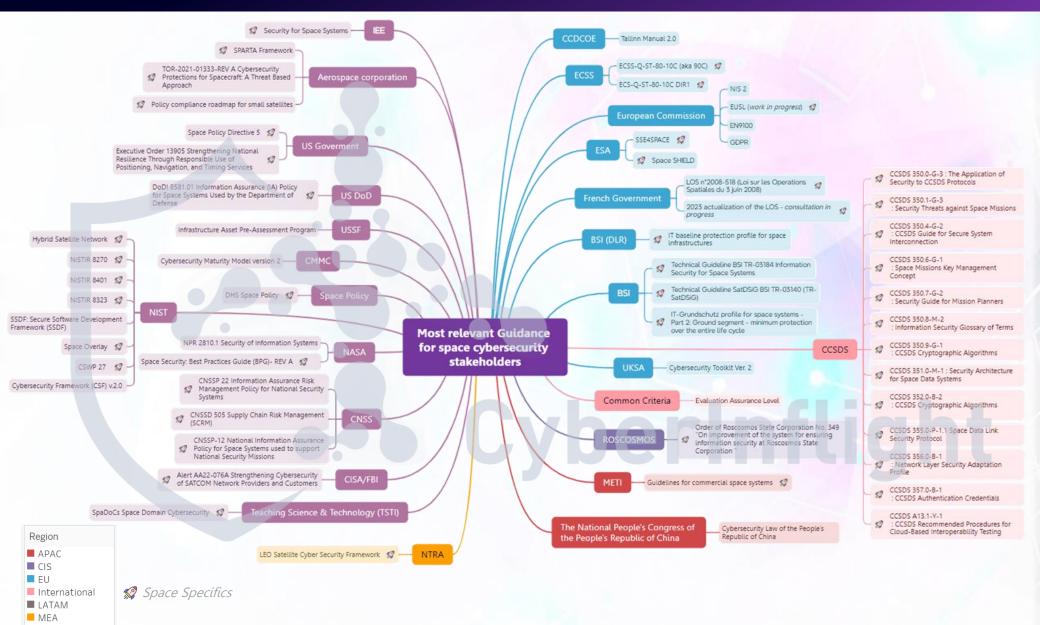
Table of content (1/2)

Executive Summary	1	Case 1: Eavesdropping Athena-Fidus	40	List of corporate actors involved in space	83	NIST overview of applicable guidance to	131
Acronym Table	3	communications	10	cybersecurity – APAC region	05	space value chain	131
Table of content	5	Case 2: ROSAT satellite attack allegations	41	List of corporate actors involved in space	84	Space Overlay and NIST SP 800-53 Rev. 5	132
CHAPTER I. INTRODUCTION	7	Case 3: Interfering with US satellites (Landsat-7	′ 42	cybersecurity – CIS region List of corporate actors involved in space		Space overlay overview	133
Introduction to the space economy	8	Terra EOS)	42	cybersecurity – MEA & LATAM regions	85		134
Observed trends in the space sector	9	Case 4: Jamming satellite signals	43 44	Corporate space cybersecurity actors	86	NISTIR 8323 overview	
New Space and innovation	10	Case 5: Intrusion of IT systems		The soar of Space Forces	89	NISTIR 8270 overview	135
Main positioning and navigation services	11	Case 6: Takeover and spoofing	45	Space Delta 6 (known as Cyber Delta or		NISTIR 8401 overview	136
overview	11	Case 7: Software bugs	46	DEL6)	90	CCSDS: Introduction	137
Main connectivity technologies overview	12	Case 8: Supply chain compromise	47	Space Delta 7 (DEL 7)	91		138
The booming economy of space data	13	Case 9: NASA cybersecurity breach	48	Space ISAC: a keystone for information		CCSDS: SEA-SEC ECSS (European Cooperation for Space	150
Cybersecurity principles	14	Case 10: South Korean satellite network attack	49	sharing	92	Standardization) & BSI (Federal Office for	139
The global cybersecurity market	15	Case 11: NewSat cyberattack	51	US Space ISAC overview	94	Information Security)	155
Cybersecurity principles for space systems	16	Case 12: Starlink under attack	52	EU Space ISAC overview	95	Tallinn Manual 2.0 & Budapest Convention	141
Increasing recognition of space	17		56	Mapping of corporate actors	98	NIS v2	142
cybersecurity	17	Tobol System	56	Mapping of institutional actors	99	IA-PRE	143
More assets in space: a broader attack	18	Case 13: DDoS cyberattack and the space domain	62	Mapping of academic actors	100	HSN & Space policy	144
surface			63	CHAPTER IV. SPACE CYBERSECURITY		CNSSP-12 & SPD-5	145
Evolution of cyberattacks against the space	19	Case 14: Centre Planeta	00	ECONOMY	101	Recognizing Space as a "Critical	
sector		Miscellaneous: NASA incident list	64	Introduction, methodology & market value		Infrastructure"	146
Viasat: a turning point in space cybersecurity	20	Overview of the recent Viasat/KA-SAT	65	estimation	102	Common criteria & Other Guidance	148
Overview of the threat landscape	21	cyberattack	68	Space Cybersecurity market value	103	LOS – Law on Space Operations	149
Lack of skilled workforce: a major challenge	22	Demystifying cyberattacks in space	68	Forecast of IT and cybersecurity budget	104	METI – Cybersecurity Guidelines	150
A new battlefield	23	Geopolitics and Space: the growth of cyber	69	The space cybersecurity debt	105	Australia Space Strategy	151
CHAPTER II, THREAT INTEL. &		threats GNSS/GPS and cyberattacks	70	Different market visions	107	Russian approach to standards in the space	
CYBERATTACKS EXAMPLES	25	Space-cyber warfare	70	Forecast from 2023 to 2033	108	industry	152
Introduction	26	The media aspect	73	Systemic cost forecast from 2023 to 2033	109	European Union Space Strategy for Security	150
Overview of cyberattacks on space	27	Examples of regional space threat players	74	Overview of significant space cybersecurity	110	and Defense	153
ecosystem	27	CHAPTER III. SPACE CYBERSECURITY	74	contracts	HU	EU Space Law	154
Space cyberattack landscape	28	STAKEHOLDERS	75	European Space Cybersecurity Ecosystem	111	SPARTA: Space Attack Research & Tactics	150
2023 Space cyberattack landscape: types of	30	Introduction & Methodology	76	Italian Space Cybersecurity Ecosystem	112	Analytics	158
cyberattacks	30	List of universities involved in space	10	French Space & Cybersecurity Ecosystems	113	SPARTA v1.4 and v1.5 – Recent updates	159
Space cyberattack landscape (1977-2023)	31	cybersecurity	77	NASA Budget FY2024	114	Space SHIELD framework	160
Space cyberattack landscape: targeted	32	List of institutions involved in space		NASA Future Actions	116	US: new strategies, new policies, new	161
segment	JL	cybersecurity – Europe region	78	NASA Cybersecurity Progress	117	frameworks	101
Space cyberattack landscape: approach by	33	List of institutions involved in space		NASA Cybersecurity Initiatives	118	Introduction to EXPORT-CONTROL	163
countries Space cyberattack landscape: regional		cybersecurity – North America region	79	NASA's Pathway to Zero Trust	119		105
approach	35	List of institutions involved in space		Space Agencies Budget around the world	120	EU and US EXPORT-CONTROL	164
2023 space cyberattacks landscape:		cybersecurity – APAC, CIS regions & others	80	Cybersecurity talent shortage	122	US EXPORT-CONTROL overview	165
motivation	37	List of corporate actors involved in space		Colorado Space Cybersecurity Ecosystem	125	Takeaways on EXPORT-CONTROL from a	166
2023 space cyberattack landscape:	20	cybersecurity – North America region	81	CHAPTER V. REGULATORY LANDSCAPE	128	satellite manufacturer	
cyberattack credibility level	38	List of corporate actors involved in space	0.2	Executive Summary	129	CMMC: Introduction	167
In-Orbit Eavesdropping	39	cybersecurity – Europe region	82	Most relevant guidance for cyber-space		CMMC: CMMC levels and domains	168
		,		stakeholders	130	CMMC: rollout phases	169 5
				stationality			


Table of content (2/2)

CMMC version 2.0	170 CHAPTER VII. CASE STUDIES	214		252	Cyber-insurance: chronology 2	295
CHAPTER VI. TECHNOLOGY	171 Executive Summary	215	anneroach	253	eyser abarancer actually are eyser risk	296
Executive Summary	172 Cybersecurity at NASA	216	approach The cybersecurity of rocket launchers	255	Cyber-insurance: stakeholders and their	297
A word on Satellite Platforms	173 NASA: Definition of the attack surface	217	US Defense Industrial Base	256	influence	51
SWaP (Size, Weight and Power)	175 NASA: General & Cybersecurity spending	g 218	DIBs around the world	258	Cyber-insurance: conventional VS specific 2	298
The evolution of hardware technology in space:	177 NASA: SOC cybersecurity spending	219		259	cyber-contract	
ARM & RISC architecture	NASA: OIG recommendations	220	AsterX 2024	260	APPENDIX – LIST OF CORPORATE 2	299
The evolution of hardware technology in space:	: 178 Starlink: an efficient DevSecOps approad	h 22'		261	ACTORS	
FPGA (Field Programmable Gate Array)			dense en etnetiene	201		
The evolution of hardware technology in space: SDR (Software Defined Radio) & SDS (Software	170	222	Llock A Cot 4	263	· · ·	
Defined Satellite)	Introduction		DETEV from Unck A Sat 4: Uns 4	265		
Other cybersecurity technologies for space	List of Acronyms	223	The future of cyber warfare: Several new	260		
systems: Lightweight cryptography (LWC) and	180 Roscosmos Information Security	- 224		268		
hardware security module (HSM)	Zarya NTC		Thunderlight and the future of cyber	269		
Cryptography tradeoff for space applications	181 Zarya NTC and the Russian Space	e 225			CyberInflig	ht
Ground Segment security: Introduction	182 SOPKA-Roscosmos	226	Introduction to Thunderlight	269	e oyberning	,
Ground Segment security: Overview	183 GosSOPKA System	227	, Impact estimation and security costs	270	~	
Ground Segment security: Examples of	184 Russian Information Security		estimation studies			
cyberattacks	Regulation Landscape	237	Reasons for running this simulation	271		
Cloud Security in space	105 Russian Space Cybersecurity Sec	tor 233	5			
Space Software & Operating Systems Ouantum in a nutshell	Trends	253	estimation study	272		
Quantum tra nutsnett Quantum technologies	191 Russian Space Cybersecurity	234	-	074		
Quantum Security	104 Mapping		estimation study	274		
Building up quantum projects	Russian Electronic Warfare Indu	stry 235	Initial security costs estimation study	/ 275		
Quantum supremacy: Europe	Landscape	220	Impacts estimation and security			
Quantum supremacy: China	197 Chinese Space cybersecurity landscap 198 Introduction (1/2)	e 238 238	measures estimation studies	276		
Quantum supremacy: USA	199 List of Acronyms	239	comparison	277		
European Quantum projects	200 Introduction (2/2)	240		278		
National Quantum strategies in Europe	202 The West and China: two differe	nt	introduction. Defining the cyber risk score	279		
EU Space Security Programs	205 visions of the world	24	Company profile: Space service company	280		
EU Space Security Programs: IRIS ² (Infrastructure		242	Company profile: Cybersecurity player	281		
for Resilience, Interconnectivity and Security by	206 space stakeholders	242	Rise of Space Cybersecurity in South Korea	282		
satellite)	Chinese space cybersecurity	244		283		
EU Space Security Programs: EGNOS (European Geostationary Navigation Overlay Service)	207		Space cybersecurity conference maps	286		
SpiderOak and Space Cybersecurity	208 Chinese cybersecurity and space	246				
SpiderOak Dynamic Trust Platform: To Secure	industries evolution			289		
Application Development within Space	209 China: A Global Space Cybersec Player	arity 247	Overview of the 2023 CYSAT conference (3 rd	200		
Organizations	,	ses 248	edition)	290		
SAIC/SDA: Secure Satellite Software Factory	210 Chinese Strengths and Weaknes	000	Cuber incurance: introduction	291		
ARCA Satcom – To secure satellite	211 BeiDou Navigation Satellite Sys		Cyber and space insurance	293		
communications	China's Cyber Offensive Capabil	ties 250	Satellite insurance	294		6
Cyber-range and satellite systems	213			19.00	17 N - 1	0

Overview of cyberattacks on space ecosystem

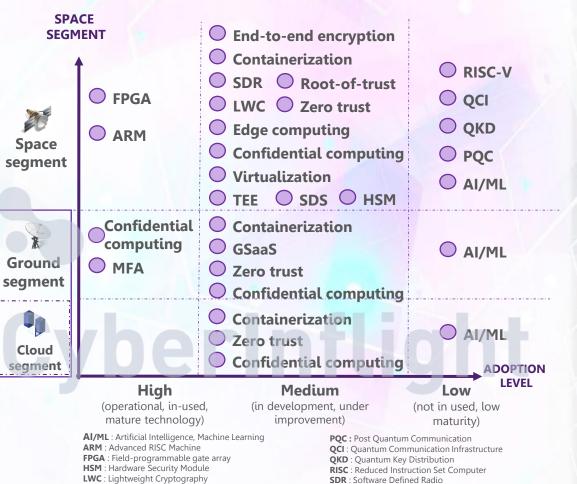


Most relevant guidance for cyber-space stakeholders

NA

Technology Executive Summary (excerpt)

The ever-increased demand for higher performance


The increasing demand for data and reliance on space applications drives the need to process more data on board and transmit it to the ground. New technologies are being developed to achieve higher performance, increased throughput, and secure communications. This involves improving existing technologies (RISC, ARM, FPGA), creating or adapting new ones for space applications (lightweight cryptography, confidential computina, containerization, quantum), and shifting to new business models (such as GSaaS and as-a-service models in general). Overcoming these challenges is essential not only to meet the growing demand for space data but also to ensure the reliable security of these services in the face of an expanding threat landscape.

Incorporating more technologies into spacecraft means existina and future operational meeting and environmental limitations. This necessitates increased performance, power, weight, or size (known as the SWaP tradeoff). The growing popularity of COTS products has led to the adoption of technologies commonly used in traditional applications, such as containerization (virtualization, Kubernetes, Docker). Trust is established at various levels, from hardware (root-of-trust) to software (like LWC or confidential computing). The ground segment is also undergoing significant changes, shifting towards cloud-based systems.

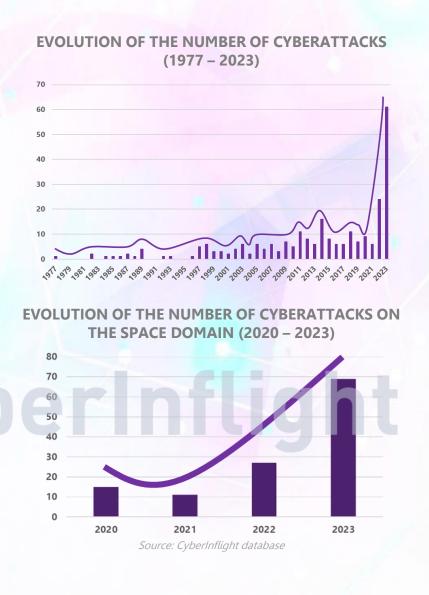
Quantum foresight

As we reach higher levels of maturity, **future technologies like quantum computing, artificial intelligence, and machine learning may be considered as disruptive forces.** Quantum technology is currently in active development, and there is a **strong interest from industry in national and regional projects.** Cybersecurity technologies are evolving to meet current and future requirements, driven mainly by the rapid evolution and increasing interest in space within the cyber threat landscape.

SPACE CYBERSECURITY TECHNOLOGY EXAMPLES & THEIR MATURITY LEVEL

TEE : Trusted Execution Environment

Copyright CyberInflight

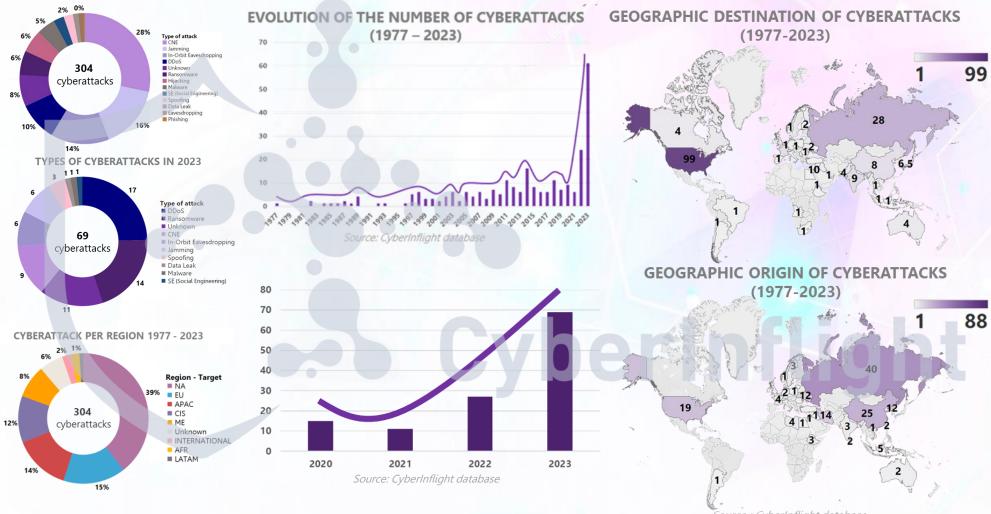

MFA : Multi-factor authentication

Assumptions & known biases for this analysis :

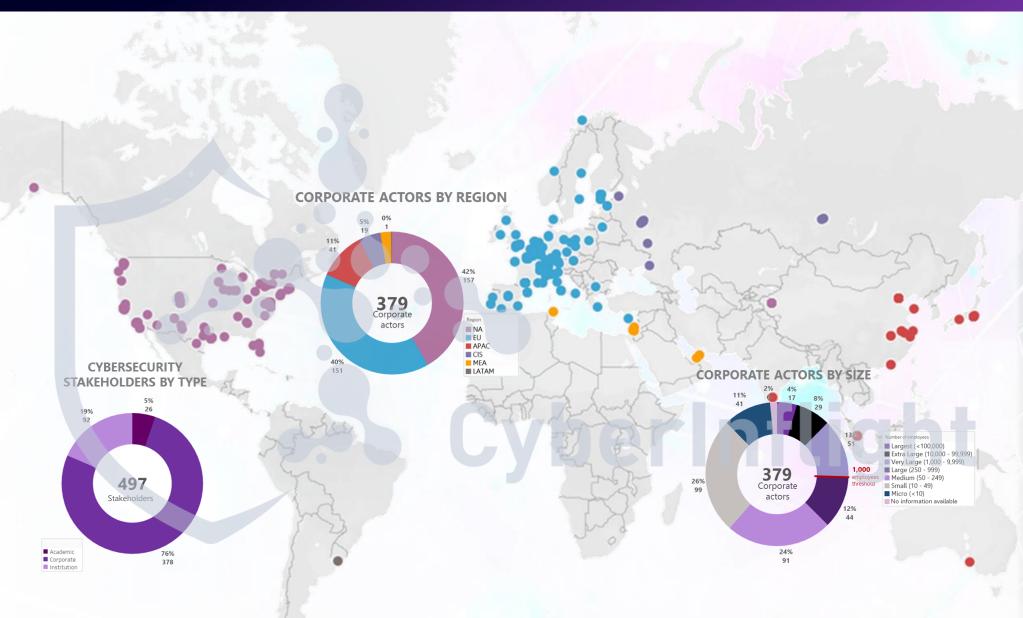
- **Observation bias**: The more we look, the more we find pieces of information.
- **Recency effect**: We tend to observe and remember more recent events.
- **Media exaggeration**: We challenge the way media cover information.
- **Definition of a cyberattack**: How you define a cyberattack defines how you count them (e.g., DDoS is always considered as "noise" among other attacks).
- Inertia of identification: Cyberattacks can be discovered or publicly mentioned years after the actual time of the attack. Our database is being regularly revised.

Evolution of the threat landscape:

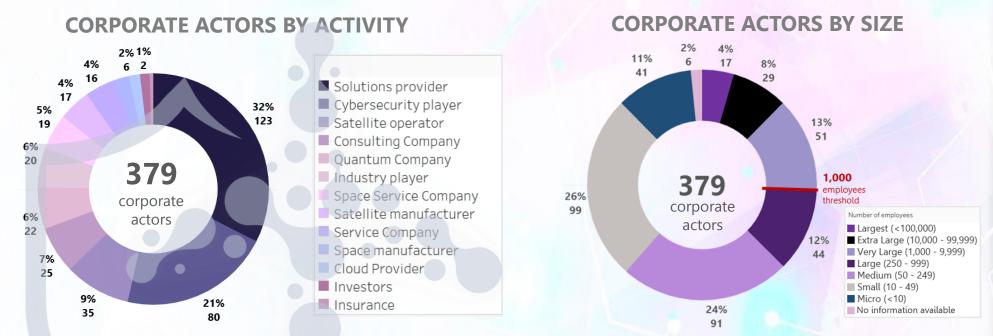
- **Significant growth rate in the last years** despite potential biases
- Peaks in cyberattacks are strongly linked to geopolitical events (2014: annexation of Crimea, 2022: start of the war in Ukraine)
- **Evolution in the type of attacks** observed (jamming, spoofing, IA-powered, in-orbit eavesdropping, etc.)
- A total of 357 cyberattacks against space systems have been identified to date (until July 2024). 35 already identified in 2024 (considering in-orbit eavesdropping)



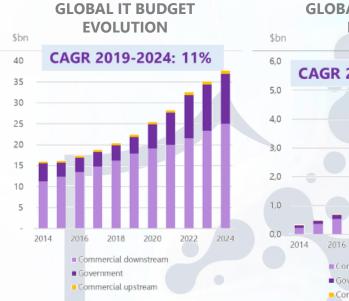
Threat landscape indicators


TYPES OF CYBERATTACKS (1977 – 2023)

Source : CyberInflight database


Overview of the ecosystem

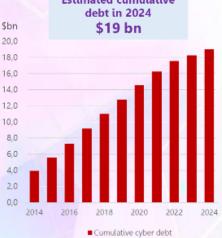
Overview of the corporate ecosystem



A competitive space cybersecurity market

- An increasing number of stakeholders are demonstrating space-cybersecurity initiatives (from 189 at YE2022 to 379 at YE2023). Pure cybersecurity players enter the space market, and more space companies tend to cybersecure their operations.
- Increasing dual-use (civil/defense) for stakeholders of space cybersecurity contracts.
- More **sovereignty considerations** for contractual agreements.
- **More implication and maturity of the supply chain** through the pressure of buyers or dedicated programs (IA-PRE, CMMC, future EUSL, etc.)

Space cybersecurity economy



ESTIMATED RECOMMENDED VERSUS ESTIMATED CUMULATIVE DEBT ACTUAL CYBERSECURITY BUDGET Sbo

A globally positive market, though locally challenging:

- A top-down approach allows for estimating the overall space cybersecurity market value.
- It is estimated that the space cybersecurity dedicated budget will be close to \$5bn by YE2024. Future major programs may significantly impact this budget (IRIS² ~€2.5m total)
- This global cybersecurity budget is, on average, still lagging behind average security agency's recommendations, triggering the **accumulation of cybersecurity debt.** This debt is forecasted to **peak by 2027**, and an **inflection point will occur from that point onward.**
- The economic situation varies for the different types of actors or in other regions of the world (competitive landscape, cyclical programs, EU vs US, among other factors).

3 SCENARIOS OF THE EVOLUTION OF CYBERATTACKS AGAINST THE SPACE DOMAIN

Avg. co	st of a c	yberat	tack on	a space s	takehold	er: \$35 m	n												
Avg. cost of a cyberattack on a space stakeholder: \$29m									Total systemic cost for 2032 : \$2.993m										
Avg. co	st of a c	yberat	tack on	a space s	takehold	er: \$21m	n											-	
The average cost of a cyberattack can be significantly influenced by 1 or 2 significant cyberattacks, which have																	T	1	ĺ
cos	t hundi	reds o	f \$mill	ions to	1 or 2 s	takehol	ders.								1		1	4	ŀ
																Z	4	t	ŀ
Total systemic cost for 2023: \$1.628m										Н		1	4	t	t	F			
Total systemic cost for 2023: \$1.357m										2			T	T	t				
Total systemic cost for 2023: \$950m										1		-1				l			
							lotal syst	emic co	st tor 2	.023: \$95 ()m		H	ы	1		T		ŀ
											1		H		1			an a search	ľ
										******							2		ŀ
						_										1	1		H
											a <mark>atan </mark> t								

5 MAIN DATABASES

357 cyberattacks reported publicly from 1977 to 2024

502 corporate, institution and academic actors of all size involved in the field of space cybersecurity

229 contracts from five regions of the world (AsiaPACific, EUrope, Middle East & Africa, Commonwealth of Independent States and North America)

116 regulations worldwide in the fields of space cybersecurity

Estimation of space cybersecurity budgets from 2015 to 2034

Cyberattack database Updated on July 1, 2024

Space Cybersecurity actors database *Updated on July 1, 2024*

Contract database Updated on July 1, 2024

Space cyber Economy database Updated on July 1, 2024

Contact us at contact@cyberinflight.com